作者:城市网 来源:城市网学院 更新日期:2013-10-8
1、等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24,70,208,622,规律为a*3-2=b 2、深一点模式,各数之间的差有规律,如 1、2、5、10、17。它们之间的差为1、3、5、7,成等差数列。这些规律还有差之间成等比之类。B,各数之间的和有规律,如1、2、3、5、8、13,前两个数相加等于后一个数。 3、看各数的大小组合规律,做出合理的分组。如 7,9,40,74,1526,5436,7和9,40和74,1526和5436这三组各自是大致处于同一大小级,那规律就要从组方面考虑,即不把它们看作6个数,而应该看作3个组。而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。所以7*7-9=40 , 9*9-7=74 , 40*40-74=1526 , 74*74-40=5436,这就是规律。 4、如根据大小不能分组的,A,看首尾关系,如7,10,9,12,11,14,这组数 ; 7+14=10+11=9+12。首尾关系经常被忽略,但又是很简单的规律。B,数的大小排列看似无序的,可以看它们之间的差与和有没有顺序关系。 5、各数间相差较大,但又不相差大得离谱,就要考虑乘方,对数字敏感程度。如6、24、60、 120、210,感觉它们之间的差越来越大,但这组数又看着比较舒服(个人感觉,嘿嘿),它们的规律就是2^3-2=6、3^3-3=24、4^3-4=60、5^3-5=120、6^3-6=210。这组数比较巧的是都是6的倍数,容易导入歧途。 6、如看大小不能看出来就要看数的特征。如21、31、47、56、69、72,它们的十位数就是递增关系,如 25、58、811、1114 ,这些数相邻两个数首尾相接,且2、5、8、11、14的差为3,如论坛上答:256,269,286,302,(),2+5+6=13,2+6+9=17,2+8+6=16,3+0+2=5, ∵ 256+13=269,269+17=286,286+16=302 ∴下一个数为:302+5=307。 7、再复杂一点,如 0、1、3、8、21、55,这组数的规律是b*3-a=c,即相邻3个数之间才能看出规律,这算最简单的一种,更复杂数列也用把前面介绍方法深化后来找出规律。 8、分数之间的规律,就是数字规律的进一步演化,分子一样,就从分母上找规律;或者第一个数的分母和第二个数的分子有衔接关系。而且第一个数如果不是分数,往往要看成分数,如2就要看成2/1。 国家公务员考试中数学计算题分值是最高的,一分一题,而且题量较大,所以很值得重视(国家公务员125题,满分100分,各题有分值差别,但如浙江省公务员一共120题,满分120分,没有分值的差别) 补充: 中间数等于两边数的乘积,这种规律往往出现在带分数的数列中,且容易忽略 如1/2、1/6、1/3、2、6、3、1/2 9、数的平方或立方加减一个常数,常数往往是1,这种题要求对数的平方数和立方数比较熟悉 如看到2、5、10、17,就应该想到是1、2、3、4的平方加1 如看到0、7、26、63,就要想到是1、2、3、4的立方减1 对平方数,个人觉得熟悉1~20就够了,对于立方数,熟悉1~10就够了,而且涉及到平方、立 方的数列往往数的跨度比较大,而且间距递增,且递增速度较快 10、A^2-B=C 因为最近碰到论坛上朋友发这种类型的题比较多,所以单独列出来 如数列 5,10,15,85,140,7085 如数列 5, ; 6, ; 19, ; ;17 , ; 344 , -55 如数列 5, 15, 10, 215,-115 这种数列后面经常会出现一个负数,所以看到前面都是正数,后面突然出现一个负数,就 考虑这个规律看看 11、奇偶数分开解题,有时候一个数列奇数项是一个规律,偶数项是另一个规律,互相成干扰项 如数列 1, 8, 9, 64, 25,216 奇数位1、9、25 分别是1、3、5的平方 偶数位8、64、216是2、4、6的立方 先补充到这儿。。。。。。 12、 后数是前面各数之各,这种数列的特征是从第三个数开始,呈2倍关系 如数列:1、2、3、6、12、24 由于后面的数呈2倍关系,所以容易造成误解! 数字推理的题目就是给你一个数列,但其中缺少一项,要求你仔细观察这个数列各数字之间的关系,找出其中的规律,然后在四个选项中选择一个最合理的一个作为答案.
|